
2012 Connectivity STEW

WebSphere Message Broker V8

.NET Integration

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Agenda

� Why .NET?

� .NET Overview

– Framework and CLR

� Integration with Broker

– .NET Compute node

� Visual Studio Integration

– Plugins

– Debugging

� The Broker Plugin API

– Navigation and Tree access

� Integrating .Net and COM applications

� ESQL Calling .NET

� Hosting the CLR

� App Domains

– Creation and Configuration

� Summary

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Why .NET?

� Many clients have a large investment in Microsoft, .NET and related technologies

– Dynamics for CRM / ERP

– SharePoint for collaboration

– Visual Studio for development

– Custom .NET applications

� .NET is a very popular environment for developers.

– TIOBE Programming Community Index for June 2011. [www.tiobe.com]

– WMB now provides transformation capability for all of the top 6 languages

Language Access and Transform

Java JavaCompute Node

C C Plugin Node

C++ C Plugin Node

C# .NET Compute Node

PHP PHPCompute Node

VB .NET Compute Node

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

.NET Framework Overview

Operating SystemOperating System

V
isu

a
l S

tu
d

io
 T

o
o

ls
V

isu
a

l S
tu

d
io

 T
o

o
ls

Garbage

Collector

Garbage

Collector

Exception

Handling

Exception

Handling
SecuritySecurity LoaderLoader

Profiling &

Debugging

Profiling &

Debugging

JIT &

NGEN

JIT &

NGENCommon Language Runtime

Base Class LibraryBase Class Library

ADO

.NET

ADO

.NET
DLRDLR WCFWCF LINQLINQ

ASP

.NET

ASP

.NET
Win

Forms

Win

Forms WPFWPF

Common Language SpecificationCommon Language Specification

40+ Others...40+ Others...JScriptJScript
C++/

CLI

C++/

CLI
F#F#

VB

.NET

VB

.NET
C#C#

ThreadingThreading

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

The .NET Common Language Runtime (CLR)

Garbage

Collector

Garbage

Collector

Exception

Handling

Exception

Handling
SecuritySecurity LoaderLoader

Profiling &

Debugging

Profiling &

Debugging

JIT &

NGEN

JIT &

NGENCommon Language Runtime

� The CLR provides an environment inside which “managed” code is executed

� Similar to a JVM

� Can be hosted inside another process

� Gives the ability to run managed code

� SQLServer does this to run managed Stored Procedures

� Provides key services to all code running inside it

� Loading, GC, Debugging etc.

Operating SystemOperating System

ThreadingThreading

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

From Source Code to Byte Code

� All .NET code is compiled from the source language into Managed “CIL” (MSIL) code

� Common Type System (CTS) and Common Language Spec (CLS)

� The CIL code lives in a .DLL or .EXE and is called an Assembly

– The Assembly is loaded into the CLR to be executed

– Code is “JITted” before it is executed

• Can be JITted before hand with NGEN

� At runtime the CLR does not care what the source language was

Common Language SpecificationCommon Language Specification

40+ Others...40+ Others...JScriptJScript
C++/

CLI

C++/

CLI
F#F#

VB

.NET

VB

.NET
C#C#

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Integrating .NET with Message Broker

� Extremely tight language agnostic integration

– Integrates any CLR language at a very low level with the broker

� Create your own .NET Compute Nodes using Visual Studio

– Integrate new or existing .NET applications directly with your Message Flow

• Write nodes in C#, VB, F#, C++/CLI, and many more

� Tightly integrated with Visual Studio

– Broker toolkit can launch Visual Studio

– Visual studio plugin to simplify node development

� Call .NET code directly from ESQL

– Jump straight from ESQL into .NET code

� Integrate with existing COM applications

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Managing .NET Integration

� Fine grained operation control

– Configurable Service, Resource Stats

� The CLR is hosted inside each Execution Group

– One CLR per E.G.

� Each CLR is split into different App Domains

– Choose which App Domain your code runs in

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

� .NET in Broker is supported on the Windows platform

� .NET functionality is available in all editions of Broker 8 (Express, Standard,

Advanced, etc)

� Broker’s existing connectivity options give flexible deployment options

– You can position .NET at the “edge” and connect to your main infrastructure

– You can position .NET in the “middle” as part of your core infrastructure

– Use any Broker transport option to make the links

• MQ, WebService, etc

Running .NET in your Enterprise

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

using SharePointClient = Microsoft.SharePoint.Client;

//Update SharePoint with details from Message

private void UpdateSharepoint(NBElement fileInfo)

string fileSource = (string)fileInfo["Location"

string fileName = "/sites/pp/Documents/" + (string)

ClientContext context = new ClientContext("http://avoca2008

using (FileStream fs = new FileStream(fileSource,

{

SharePointClient.File.SaveBinaryDirect(context, fileName, fs,

}

}

� First Class Broker transformation node

– similar to JavaCompute

� Write your transformations in any CLR compliant language

– Build transformations in: C#, VB, F#, C++/CLI, Jscript, etc…

� Allows you to integrate your .NET code directly with your Flow

– Three code “templates” to get you started

• Filter Message

• Modify Message

• Create Message

� Implement a single method “Evaluate”

– Stub is auto implemented in Visual Studio

� Provides full access to the Broker Trees

– Message,

– LocalEnvironment,

– Environment,

– ExceptionList

� Dynamic Terminals

– As many as you need

.NET Compute Node - What do you want to integrate today?

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

.NET Compute Node Configuration

� Browse to choose Assembly

� Drag / Drop an assembly on the node to configure

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Launch Visual Studio directly from the .NET Compute node

� Simply double-click on the node

- Or right click “Open Microsoft Visual Studio”

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Visual Studio 2010 Integration

� Visual Studio is the “toolkit” when developing .NET assemblies

– Visual Studio is the “industry standard” for .NET development

� Tight integration with the Broker runtime

– “Double Click” on a .NETCompute Node to launch Visual Studio

– Node can be configured with a “Solution” to launch automatically

� Plugin for Visual Studio to generate skeleton .NET Compute code

– Specific to the language choice and the node type (Filter / Modify / Create)

� Use Visual Studio debugger to debug your .NET assemblies.

– “Attach” the debugger to the runtime “dataflowengine.exe” process for the E.G.

• See all the message trees in their entirety.

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Speed up development with the Visual Studio Broker Node Template

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Auto generated node templates for Visual Studio

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Complete Template Filter Node in C#

using System;

using IBM.Broker.Plugin;

namespace FilterNodes {

public class SimpleFilterNode : NBComputeNode {

public override void Evaluate(NBMessageAssembly assembly) {

NBOutputTerminal outTerminal = OutputTerminal("out");

NBMessage inputMessage = assembly.Message;

NBElement root = inputMessage.RootElement;

#region UserCode

// Add user code in this region to filter the message

#endregion UserCode

outTerminal.Propagate(assembly);

}

}

}

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

The Visual Studio Object Browser

� Use the Object browser to view the Broker .NET APIs

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Visual Studio Content Assist for the Broker Plugin API

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Debug your .NET code with the Visual Studio Debugger

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

� The API is designed to look and feel like a standard .NET API

– Follows the Microsoft “Framework Design Guidelines”

– For example, uses properties where appropriate, follows naming conventions etc

� Is designed to be usable by as many .NET languages as possible

– Plugin assembly is marked as ‘CLSCompliant’.

– CLS guidelines followed

– Where facilities that are not CLS compliant are used, alternatives are offered

• E.g. Alternatives for explicit datatype casting

� Scalar values and Nullable value types supported throughout

– All broker types are “Nullable”

– Conversions to/from Nullable equivalents available

� Simple but Powerful

– Utility methods provided for common tasks, such as throwing user exceptions,

– creating XMLDecl’s etc [<?xml version="1.0" encoding="UTF-8" standalone="yes"?>]

NBParsers.XMLNSC.CreateXmlDeclaration(element, "1.0", "utf-8", "yes");

Programming the Broker with the .NET APIs

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

� Each element in the tree has several properties

– Parent, LastChild, FirstChild, PreviousSibling, NextSibling

� They can be chained to access a specific element

– NBElement amount = root.LastChild.LastChild.LastChild;

� These properties return either an Element or NULL

– NullReferenceException possible if you dereference NULL

Message Broker Tree : Low Level Access

XML Message
<Money>

<Currency>USD</Currency>

<Amount>5000.00</Amount>
</Money>

Root

... XMLNSC

Money

Currency Amount
USD 5000.00’

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

� Navigation by name is also possible

NBElement amount = root["XMLNSC"]["Money"]["Amount"];

� Navigation by name and namespace as well

string ns = new string("http://my.long.namespace");

NBElement amount = root["XMLNSC"][ns, "Money"][ns, "Amount"];

� Still have to be careful:

– NullReferenceException still possible

Message Broker Tree : Access by Name

XML Message
<ns:Money xmlns:ns="http://my.long.namespace">

<ns:Currency>USD</ns:Currency>

<ns:Amount>5000.00</ns:Amount>
</ns:Money>

Root

... XMLNSC

ns:Money

ns:Currency ns:Amount

USD 5000.00’

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

� Allows Broker to integrate with COM and .NET applications

– Access existing COM and .NET applications that run in a .NET 4 environment

� .NET makes it easy to call other .NET applications and components

using SharePointClient = Microsoft.SharePoint.Client;

//Update SharePoint with details from Message

private void UpdateSharepoint(NBElement fileInfo)

{

string fileSource = (string)fileInfo["Location"];

string fileName = "/sites/pp/Documents/" + (string)fileInfo["Name"];

ClientContext context = new ClientContext("http://avoca2008");

using (FileStream fs = new FileStream(fileSource, FileMode.Open))

{

SharePointClient.File.SaveBinaryDirect(context, fileName, fs, true);

}

}

Integration breadth: Call COM and .NET applications within Broker

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

� Use LINQ queries to access the Broker Tree

NBElement x = InputMessage.RootElement["XMLNSC"]["Top"];

var list = x.Where(t => t.Name == "Money" && (String)t["Currency"] == "USD");

foreach (NBElement element in list) {

//Process each element in turn

}

Message Broker Tree : Using LINQ

24

Root

... XMLNSC

Money

Currency Amount
USD 5000.00’

XML Message
<Top>
<Money>
<Currency>GBP</Currency>
<Amount>1000.00</Amount>

</Money>

<Money>
<Currency>USD</Currency>
<Rate>1.4</Rate>
<Amount>5000.00</Amount>

</Money>
<Money>
<Currency>USD</Currency>
<Amount>2000.00</Amount>

</Money>
</Top>

Top

MoneyMoney

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

� Broker exceptions are turned into NBExceptions so they can be caught in .NET code

– NBException

• NBRecoverableException

NBUserException

NBXxxException

� NBExceptions are turned into Broker exceptions if thrown out of the user .NET code

– You can “leave” your .NET code with an exception if necessary.

– You can catch the exception by using in a Try/Catch node or wiring a Catch terminal.

– NBRecoverable exceptions can be caught in an ESQL handler, with a specified

SQLCode and SQLState

� .NET exceptions are turned into Broker exceptions if thrown out of the user .NET code

– You can catch the exception by using in a Try/Catch node or wiring a Catch terminal

Handle Exceptions with Ease

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Expose .NET Methods as Services – a Pattern Based Approach

� New Service Facade Pattern

– “Microsoft .NET Request-Response”

� Easily expose .NET Methods as Web Services

– “drag-drop” of assembly onto “pattern wizard”

� Pattern Flow is ready to deploy

– Auto Generated WSDL and ESQL

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

ESQL Calling .NET : Declaring the Method

� ESQL Function and Procedure syntax extended to allow .NET method calls

CREATE PROCEDURE DotNetMethod (

IN x INTEGER NOT NULL,

OUT y INTEGER NOT NULL,

INOUT z INTEGER NOT NULL)

RETURNS INTEGER NOT NULL

LANGUAGE .NET

EXTERNAL NAME "MyNamespace.MyClass.MyDotNetMethod"

ASSEMBLY "D:\WMB\Assemblies\MyApplication.dll"

APPDOMAIN "MyAppDomain";

� Drag Drop an Assembly onto a Compute node to auto generate matching signatures
– Choose the app domain (optional)

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

� There is nothing .NET specific when the routine is invoked.

DECLARE input INTEGER 42;

DECLARE output INTEGER ;

DECLARE inAndOut INTEGER 45;

DECLARE result INTEGER ;

CALL DotNetMethod(input, output, inAndOut) INTO result;

� Call static methods that have compatible types

– Comprehensive type mapping table

ESQL Calling .NET : Making the Call

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Hosting the CLR in the Execution Group

� A CLR is hosted inside each execution group on Windows

– V4.0 CLR. If the .NET code is supported running in the .NET 4 CLR then you can run it

in Broker.

� The CLR is started automatically if found when the E.G. starts

– Not an error if it is not found

– But .NET code cannot run without it.

� CLR statistics available to show memory usage, Garbage collections etc.

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Application Domains in .NET : 1

� All code executed in the CLR runs inside an App Domain

– A default App Domain created by the CLR

– Extra App Domains can be created by user code

– Code can be shared between App Domains if it is loaded “domain neutral”

� An App Domain provides a scoping point

– A sub-process unit of isolation for managed code

• For unload / reload of code

• For sharing of data

Domain 1

Shared “neutral” Domain Default Domain

Domain 2

Assembly1.dll

Assembly2.dll

Shared data

Assembly1.dll

Assembly3.dll

Shared data

mscoree.dll

Process 1

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Application Domains in .NET : 2

� Only whole App Domains can be unloaded

– Not possible to unload a single Assembly

– Not possible to unload “domain neutral” assemblies

� Sharing Data between assemblies

– Code sharing an app domain can share state

– Cross App Domain data sharing requires “remoting” of the data to be shared

Domain 1

Shared “neutral” Domain Default Domain

Assembly1.dll

Assembly2.dll

Shared data

mscoree.dll

Process 1

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Application Domains in the Broker : 1

� App Domains provide the unit of scoping for all .NET code

� App Domains have several properties

– A name and a “base directory” where the code in that AppDomain lives

– An optional configuration file

• Provides extra information to code running in that domain

� App Domains can be created by name

– If unnamed a domain will be named after the broker Application the flow is a part of

� App Domains can also be created by a Configurable Service

– Specify App Domain properties

� App Domains allow the “hot swap” of a .NET assembly with “Shadow Copy”

� Flow will dynamically reload associated App Domains if the code is changed.

� Speed up development time

� App Domains provide statistics about their memory usage

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Application Domains in the Broker : 2

ESQL

Shared “Neutral” Domain Default Domain

DotNetFlow

CLR inside the Execution Group

LibraryAssembly.dll

IBM.Broker.Plugin.dll

Shared data

NodeAssembly.dll

IBM.Broker.Plugin.dll

Shared data

IBM.Broker.Support.dll

DotNetFlow

ExecutionGroup1

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

AppDomain Shadow Copy - “Hot Swap” Your Assemblies

1: Build your assembly in Visual Studio

2: .NET Compute Node points to the assembly on disk

– Deployed as part of a flow

3: Test flow

4: Rebuild in Visual Studio after changes

5: Re-test flow

– No re-deploy / restart needed

“Rebuild”

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

CLR Native Datatype Mapping

Broker Type 1 CLR Type 1 Broker Type 2 CLR Type 2
Integer Not Null

Integer

Int64

Nullable<Int64>

Date Not Null

Date

DateTimeOffset

Nullable<DateTimeOffset>

Int Not Null

Int

Int32

Nullable<Int32>

Time Not Null

Time

TimeSpan

Nullable<TimeSpan>

Decimal Not Null

Decimal

Decimal

Nullable<Decimal>

Timestamp Not Null

Timestamp

DateTimeOffset

Nullable<DateTimeOffset>

Float Not Null

Float

Double

Nullable<Double>

Gmttime Not Null

Gmttime

TimeSpan

Nullable<TimeSpan>

Bit Not Null

Bit

BitArray

“”

Gmttimestamp Not Null

Gmttimestamp

DateTime

Nullable<DateTime>

Blob Not Null

Blob

Byte[]

“”

Interval Not Null *

Interval *

TimeSpan

Nullable<TimeSpan>

Character Not Null

Character

String

“”

Interval YEAR – MONTH Not Supported

Char Not Null

Char

Char

Nullable<Char>

Reference Not Null

Reference

NBElement

“”

Boolean Not Null

Boolean

Boolean

Nullable<Boolean>

* DAY – HOUR – MINUTE – SECOND

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

C# Datatype Mapping 1

Broker Type C# Type (In) C# Type (Out) C# Type (Inout)
Integer Not Null

Integer

long

long?

out long

out long?

ref long

ref long?

Int Not Null

Int

int

int?

out int

out int?

ref int

ref int?

Decimal Not Null

Decimal

decimal

decimal?

out decimal

out decimal?

ref decimal

ref decimal?

Float Not Null

Float

double

double?

out double

out double?

ref double

ref double?

Bit Not Null

Bit

BitArray

“”

out BitArray

“”

ref BitArray

“”

Blob Not Null

Blob

Byte[]

“”

out Byte[]

“”

ref Byte[]

“”

Character Not Null

Character

string

“”

out string

“”

ref string

“”

Char Not Null

Char

char

char?

out char

out char?

ref char

ref char?

Boolean Not Null

Boolean

bool

bool?

out bool

out bool?

ref bool

ref bool?

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Broker Type VB Type (In) VB Type (Out) VB Type (Inout)
Integer Not Null

Integer

ByVal Long

ByVal Long?

<Out()> ByRef Long

<Out()> ByRef Long?

ByRef Long

ByRef Long?

Int Not Null

Int

ByVal Integer

ByVal Integer?

<Out()> ByRef Integer

<Out()> ByRef Integer?

ByRef Integer

ByRef Integer?

Decimal Not Null

Decimal

ByVal Decimal

ByVal Decimal?

<Out()> ByRef Decimal

<Out()> ByRef Decimal?

ByRef Decimal

ByRef Decimal?

Float Not Null

Float

ByVal Double

ByVal Double?

<Out()> ByRef Double

<Out()> ByRef Double?

ByRef Double

ByRef Double?

Bit Not Null

Bit

ByVal BitArray

“”

<Out()> ByRef BitArray

“”

ByRef BitArray

“”

Blob Not Null

Blob

ByVal Byte()

“”

<Out()> ByRef Byte()

“”

ByRef Byte()

“”

Character Not Null

Character

ByVal String

“”

<Out()> ByRef String

“”

ByRef String

“”

Char Not Null

Char

ByVal Char

ByVal Char?

<Out()> ByRef Char

<Out()> ByRef Char?

ByRef Char

ByRef Char?

Boolean Not Null

Boolean

ByVal Boolean

ByVal Boolean?

<Out()> ByRef Boolean

<Out()> ByRef Boolean?

ByRef Boolean

ByRef Boolean?

VB Datatype Mapping 1

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Summary

� Very tight .NET Integration

– CLR v4 hosted inside the Execution Group

– .NET code executed natively inside the broker

– Use any CLR language to create your nodes

– Integrated App Domain support

� Large API to provide access to message broker facilities

– Navigation

– Element creation

– Exception handling

• From .NET exception to ExceptionList

• From ExceptionList to .NET exception

• Catch exceptions in ESQL

� Visual Studio Integration

– Launch Visual Studio from Eclipse

– Plugins to provide fast node creation

– Content assist for easy access to the API

– Debug your nodes using Visual Studio

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Questions?

© 2011 IBM Corporation

WebSphere Connectivity STEW 2012

40

Merci

Grazie

Gracias

Obrigado

Danke

Japanese

French

Russian

German

Italian

Spanish

Brazilian Portuguese

Arabic

Traditional Chinese

Simplified Chinese

Thai

© 2012 IBM Corporation

WebSphere Connectivity STEW 2012

Copyright Information

© Copyright IBM Corporation 2011. All Rights Reserved. IBM, the IBM logo, ibm.com, AppScan,

CICS, Cloudburst, Cognos, CPLEX, DataPower, DB2, FileNet, ILOG, IMS, InfoSphere, Lotus,

Lotus Notes, Maximo, Quickr, Rational, Rational Team Concert, Sametime, Tivoli, WebSphere,

and z/OS are trademarks or registered trademarks of International Business Machines Corporation

in the United States, other countries, or both. If these and other IBM trademarked terms are

marked on their first occurrence in this information with a trademark symbol (® or ™), these

symbols indicate U.S. registered or common law trademarks owned by IBM at the time this

information was published. Such trademarks may also be registered or common law trademarks in

other countries. A current list of IBM trademarks is available on the Web at “Copyright and

trademark information” at ibm.com/legal/copytrade.shtml.

Coremetrics is a trademark or registered trademark of Coremetrics, Inc., an IBM Company.

SPSS is a trademark or registered trademark of SPSS, Inc. (or its affiliates), an IBM Company.

Unica is a trademark or registered trademark of Unica Corporation, an IBM Company.

Java and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates. Other

company, product and service names may be trademarks or service marks of others. References

in this publication to IBM products and services do not imply that IBM intends to make them

available in all countries in which IBM operates.

