Студенческая олимпиада БГУ по математике (2011 г.)

1. Функция $f \in C^3([a,b])$ в четырех различных точках обращается в нуль. Доказать, что существует точка $x_0 \in [a,b]$, в которой справедливо равенство

$$f'''(x_0) - f(x_0) = 3(f''(x_0) - f'(x_0)).$$

- 2. Последовательность (a_n) убывает, ее предел равен 0 и $b_n \ge 0$ для любого n, где $b_n = a_n 2a_{n+1} + a_{n+2}$. Доказать, что ряд $\sum_{n=1}^{\infty} nb_n$ сходится и найти его сумму.
- 3. Доказать, что каждое положительное рациональное число можно представить в виде конечной суммы различных членов гармонического ряда $\sum_{n=1}^{\infty} \frac{1}{k}$.
- 4. Функция $f \in C([a,b])$ и $\int\limits_a^b x^n f(x) dx = 0, \, \forall n=1,2,\dots$ Дока- зать, что f=0.
- 5. Пусть $\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = 0$ и алгебраические дополнения $A_{ij} = a_{ij}^2 \ \forall i,j=1,2,3$. Доказать, что $a_{ij} = 0 \ \forall i,j=1,2,3$,
- 6. Пусть A коммутативное кольцо с единицей. Элемент $a \in A$ называется идемпотентным, если $a \neq 0$ и $a^2 = a$, и нильпотентным, если $a^n = 0$ для некоторого $n \in \mathbb{N}$.
 - а) Проверить, что множество $I \subset A$ всех нильпотентных элементов является идеалом.
 - б) Пусть элемент $\overline{a} = a + I$ из $\overline{A} = A/I$ является идемпотентным. Показать, что существует такой многочлен $f(x) \in \mathbb{Z}(x)$, для которого f(a) индемпотентен в A, причем $f(a) \equiv a \pmod{I}$.

Студенческая олимпиада БГУ по математике (2011 г.)

1. Функция $f \in C^3([a,b])$ в четырех различных точках обращается в нуль. Доказать, что существует точка $x_0 \in [a,b]$, в которой справедливо равенство

$$f'''(x_0) - f(x_0) = 3(f''(x_0) - f'(x_0)).$$

- 2. Последовательность (a_n) убывает, ее предел равен 0 и $b_n \ge 0$ для любого n, где $b_n = a_n 2a_{n+1} + a_{n+2}$. Доказать, что ряд $\sum_{n=1}^{\infty} nb_n$ сходится и найти его сумму.
- 3. Доказать, что каждое положительное рациональное число можно представить в виде конечной суммы различных членов гармонического ряда $\sum_{n=1}^{\infty} \frac{1}{k}$.
- 4. Функция $f \in C([a,b])$ и $\int\limits_a^b x^n f(x) dx = 0, \, \forall n=1,2,\dots$ Дока- зать, что f=0.
- 5. Пусть $\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = 0$ и алгебраические дополнения $A_{ij} = a_{ij}^2 \ \forall i,j=1,2,3$. Доказать, что $a_{ij} = 0 \ \forall i,j=1,2,3$,
- 6. Пусть A коммутативное кольцо с единицей. Элемент $a \in A$ называется идемпотентным, если $a \neq 0$ и $a^2 = a$, и нильпотентным, если $a^n = 0$ для некоторого $n \in \mathbb{N}$.
 - а) Проверить, что множество $I \subset A$ всех нильпотентных элементов является идеалом.
 - б) Пусть элемент $\overline{a} = a + I$ из $\overline{A} = A/I$ является идемпотентным. Показать, что существует такой многочлен $f(x) \in \mathbb{Z}(x)$, для которого f(a) индемпотентен в A, причем $f(a) \equiv a \pmod{I}$.