Республиканская

студенческая олимпиада по математике

г. Минск, 14 — 16 мая 2010 года

Группа A

1. Пусть функция f бесконечно дифференцируема на интервале (-1;1) и пусть последовательность $f^{(n)}$ сходится равномерно на (-1;1). Известно, что $\lim_{n\to\infty} f^{(n)}(0)=1$.

Найдите $\lim_{n\to\infty} f^{(n)}(x)$.

2. Вычислите

$$\int_{0}^{+\infty} \frac{dx}{\sqrt{x}(1+x)(1+x^{\sqrt{2}})}.$$

- 3. Пусть K замкнутый единичный круг $x^2+y^2\leq 1$ и C единичная окружность $x^2+y^2=1$. Через R(MN) обозначим прямоугольник с диагональю MN и сторонами, параллельными осям Ox и Oy.
- а) Зафиксируем на окружности C точку M. Найдите вероятность того, что при случайном выборе точки M во внутренности круга K ни одна из точек прямоугольника R(MN) не лежит во внешности K.
- б) Найдите вероятность того, что при случайном выборе точки M на окружности C и точки N во внутренности K ни одна из точек прямоугольника R(MN) не лежит во внешности K.
- **4.** Пусть M симметрическая $n \times n$ матрица, а U такое подпространство \mathbb{R}^n , что $x^T M x \leq 0$ при всех $x \in U$.

Докажите, что если размерность U равна n-1, то матрица M имеет не более одного положительного собственного значения.

5. Сопоставим конечной группе G граф Γ следующим образом: два элемента $a, b \in G$ соединим ребром в том и только том случае, если $(ab^{-1})^2 \neq e$, где e — единица группы G.

Если $G = \{v_1, v_2, ..., v_n\}$, то пусть A обозначает матрицу смежности графа Γ ($a_{ij} = 1$, если v_i и v_j соединены ребром, в противном случае $a_{ij} = 0$). Докажите, что $\det A$ является четным числом.

6. Действительная последовательность $(x_n)_{n\geq 0}$ удовлетворяет следующим условиям:

a) $x_n \neq 0$ при всех $n \geq 0$;

б)
$$\begin{vmatrix} x_{n+k} & x_{n+k+1} & \dots & x_{n+2k} \\ x_{n+k-1} & x_{n+k} & \dots & x_{n+2k-1} \\ \dots & \dots & \dots & \dots \\ x_n & x_{n+1} & \dots & x_{n+k} \end{vmatrix} = a^n, \quad a \neq 0, \text{ при всех } n \geq 0.$$

Докажите, что существуют такие действительные числа $a_1, a_2, ..., a_k$, что

$$x_{n+k+1} = a_1 x_{n+k} + \dots + a_k x_{n+1} + (-1)^k a x_n, \quad \forall n \ge 0.$$

Время работы 4,5 часа.

Каждая задача оценивается в 10 баллов.

Пользоваться справочной литературой и калькуляторами запрещено.