Республиканская студенческая олимпиада по математике (группа А, 2011 г.)

- 1. Пусть A невырожденная матрица, в каждой строке которой есть только один ненулевой элемент корень из единицы некоторой степени. Доказать, что существует такое целое число k, что $A^* = A^k$ (здесь $(A^*)_{ij} = (\overline{a_{ji}})$).
- 2. Пусть $f(x) = a_n x^n + \cdots + a_0$ многочлен нечетной степени с целыми коэффициентами. Рассмотрим множество целых точек на его графике: $M = \{ P_i = (b_i, f(b_i)) | b_i \in Z \}$. Доказать, что множество всех пар точек $P_i, P_j \in M$, расстояние между которыми является целым числом, конечно.
- 3. Числовая последовательность $(a_n), a_n \geq 0$, удовлетворяет неравенству $a_{n+m} \leq a_n \cdot a_m \ \forall n, m \in N$. Доказать, что последовательность $(\sqrt[n]{a_n})$ имеет предел.
- 4. Пусть $A = [0; 1] \times [0; 1]$, и на множестве A задана функция

$$S(x,y) = \sum_{\substack{\frac{1}{2} \le \frac{m}{n} \le 2, \ n,m \in \mathbb{N}}} x^m y^n.$$

Найти
$$\lim_{\substack{(x,y)\to (1,1)\\(x,y)\in A}} (1-xy^2)(1-x^2y)S(x,y).$$

- 5. С помощью циркуля и линейки построить директрису параболы, заданную на плоскости своим графиком.
- 6. Для произвольного числа $n \in N$ рассмотрим две суммы

$$\alpha_n := \sum_{j \geq 1} \sum_{1 \leq k_1 < k_2 \cdots < k_j \leq n, \atop \text{BCE } k_j \text{ HEVETHЫ}} \frac{1}{k_1 k_2 \cdots k_j}, \quad \beta_n := \sum_{j \geq 1} \sum_{1 \leq m_1 < m_2 \cdots < m_j \leq n, \atop \text{BCE } m_j \text{ ЧЕТНЫ}} \frac{1}{m_1 m_2 \cdots m_j}.$$

Пусть $x_n = \alpha_n - \beta_n$. Найти асимптотику последовательности (x_n) (т.е. такие $\lambda, \mu \in R$, для которых $\lim_{n \to \infty} \frac{x_n}{\lambda n^{\mu}} = 1$).

Республиканская студенческая олимпиада по математике (группа А, 2011 г.)

- 1. Пусть A невырожденная матрица, в каждой строке которой есть только один ненулевой элемент корень из единицы некоторой степени. Доказать, что существует такое целое число k, что $A^* = A^k$ (здесь $(A^*)_{ij} = (\overline{a_{ji}})$).
- 2. Пусть $f(x) = a_n x^n + \cdots + a_0$ многочлен нечетной степени с целыми коэффициентами. Рассмотрим множество целых точек на его графике: $M = \{ P_i = (b_i, f(b_i)) | b_i \in Z \}$. Доказать, что множество всех пар точек $P_i, P_j \in M$, расстояние между которыми является целым числом, конечно.
- 3. Числовая последовательность $(a_n), a_n \geq 0$, удовлетворяет неравенству $a_{n+m} \leq a_n \cdot a_m \ \forall n, m \in N$. Доказать, что последовательность $(\sqrt[n]{a_n})$ имеет предел.
- 4. Пусть $A = [0; 1] \times [0; 1]$, и на множестве A задана функция

$$S(x,y) = \sum_{\substack{\frac{1}{2} \le \frac{m}{n} \le 2, \ n,m \in \mathbb{N}}} x^m y^n.$$

Найти
$$\lim_{\substack{(x,y)\to (1,1)\\(x,y)\in A}} (1-xy^2)(1-x^2y)S(x,y).$$

- 5. С помощью циркуля и линейки построить директрису параболы, заданную на плоскости своим графиком.
- 6. Для произвольного числа $n \in N$ рассмотрим две суммы

$$\alpha_n := \sum_{j \geq 1} \sum_{1 \leq k_1 < k_2 \cdots < k_j \leq n, \atop \text{BCE } k_j \text{ HEVETHЫ}} \frac{1}{k_1 k_2 \cdots k_j}, \quad \beta_n := \sum_{j \geq 1} \sum_{1 \leq m_1 < m_2 \cdots < m_j \leq n, \atop \text{BCE } m_j \text{ ЧЕТНЫ}} \frac{1}{m_1 m_2 \cdots m_j}.$$

Пусть $x_n = \alpha_n - \beta_n$. Найти асимптотику последовательности (x_n) (т.е. такие $\lambda, \mu \in R$, для которых $\lim_{n \to \infty} \frac{x_n}{\lambda n^{\mu}} = 1$).

Республиканская студенческая олимпиада по математике (группа Б, 2011 г.)

1. Найти все функции $f:C\to C$, удовлетворяющие функциональному уравнению

$$f(z) + z \cdot f(1-z) = 1 + z.$$

2. Вычислить определитель
$$\Delta_n = \begin{vmatrix} 1 & -1 & 0 & \cdots & 0 \\ x & h & -1 & \cdots & 0 \\ x^2 & hx & h & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x^n & hx^{n-1} & hx^{n-2} & \cdots & h \end{vmatrix}$$

3. Последовательность (S_n) задана следующим образом:

$$S_1 = \ln a$$
, $S_n = \sum_{k=1}^{n-1} \ln(a - S_k)$, $n \ge 2$.

Доказать, что последовательность (S_n) сходится и найти ее предел.

4. Пусть
$$p(x) = 2x^6 + 4x^5 + 3x^4 + 5x^3 + 3x^2 + 4x + 2$$
, $f(\alpha) = \int_0^{+\infty} \frac{x^\alpha dx}{p(x)}$. Найти: а) множество задания функции f ;

- б) точку минимума функции f.
- 5. Найти дифференцируемые функции $u:R\to R$, удовлетворяющие соотношениям

$$u'(t) = u(t) + \int_{0}^{1} u(\tau)d\tau, \quad u(0) = 1.$$

6. Известно, что наибольший угол, под которым эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ может пересекать концентричную ему окружность, равен 45° . Найти отношение a/b полуосей эллипса.

Республиканская студенческая олимпиада по математике (группа Б, 2011 г.)

1. Найти все функции $f:C\to C$, удовлетворяющие функциональному уравнению

$$f(z) + z \cdot f(1-z) = 1 + z.$$

2. Вычислить определитель
$$\Delta_n = \begin{vmatrix} 1 & -1 & 0 & \cdots & 0 \\ x & h & -1 & \cdots & 0 \\ x^2 & hx & h & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x^n & hx^{n-1} & hx^{n-2} & \cdots & h \end{vmatrix}$$

3. Последовательность (S_n) задана следующим образом:

$$S_1 = \ln a$$
, $S_n = \sum_{k=1}^{n-1} \ln(a - S_k)$, $n \ge 2$.

Доказать, что последовательность (S_n) сходится и найти ее предел.

4. Пусть
$$p(x) = 2x^6 + 4x^5 + 3x^4 + 5x^3 + 3x^2 + 4x + 2$$
, $f(\alpha) = \int_0^{+\infty} \frac{x^\alpha dx}{p(x)}$. Найти: а) множество задания функции f ;

- б) точку минимума функции f.
- 5. Найти дифференцируемые функции $u:R\to R$, удовлетворяющие соотношениям

$$u'(t) = u(t) + \int_{0}^{1} u(\tau)d\tau, \quad u(0) = 1.$$

6. Известно, что наибольший угол, под которым эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ может пересекать концентричную ему окружность, равен 45° . Найти отношение a/b полуосей эллипса.

Республиканская студенческая олимпиада по математике (Группа А, 2011г.)

1. Пусть A — невырожденная матрица, в каждой строке которой есть только один ненулевой элемент — корень из единицы некоторой степени. Доказать, что существует такое целое число k, что $A^* = A^k$ (здесь $(A^*)_{ij} = (\overline{a_{ji}})$).

Решение. Легко усмотреть, что $AA^* = E$ — единичная матрица. Очевидно, что произведение двух матриц рассматриваемого вида снова будет иметь тот же вид, а обратной к A будет A^* . Поэтому все такие матрицы образуют группу по умножению.

Если в i-ой строке стоит корень из 1 степени $r_i, i=\overline{1,n}$, то можно считать, что все ненулевые элементы A являются корнями из 1 степени $N=k_1k_2...k_n$. Можно считать, что A является элементом конечной группы: имеется N ненулевых элементов, которые могут занимать n! различных позиций. Если k-порядок этой группы, то $A^k=E$. Отсюда $A^*=A^kA^*=A^{k-1}(AA^*)=A^{k-1}$.

2. Пусть $f(x) = a_n x^n + \cdots + a_0$ — многочлен нечетной степени с целыми коэффициентами. Рассмотрим множество целых точек на его графике: $M = \{ P_i = (b_i, f(b_i)) \mid b_i \in Z \}$. Доказать, что множество всех пар точек $P_i, P_j \in M$, расстояние между которыми является целым числом, конечно.

Решение. Пусть P=(a,f(a)) и $Q=(b,f(b))\in M; d(P,Q)\in \mathbb{Z}\Leftrightarrow (b-a)^2+(f(b)-f(a))^2-$ точный квадрат. $f(b)-f(a)=a_n(b^n-a^n)+...+a_1(b-a)=(b-a)[...].$ $d^2=(b-a)^2(1+[...]^2).$ Отсюда $1+[...]^2$ является точным квадратом. Это возможно только в том случае, когда $[...]=\frac{f(b)-f(a)}{b-a}=0$, т.е. f(b)=f(a). Для многочлена нечетной степени n всегда существует столь

большое
$$N \in \mathbb{N}$$
, что $f\bigg(\{N+1,N+2,...\}\bigg) \cap f\bigg(\{...,N-1,N\}\bigg) = \emptyset$ и $f\bigg(\{-N-1,-N-2,...\}\bigg) \cap f\bigg(\{-N,-N+1,...\}\bigg) = \emptyset$, причем на множествах $\{N+1,N+2,...\}$ и $\{-N-1,-N-2,...\}$

функция f строго монотонна. Поэтому все такие $a,b\in\mathbb{Z}$, для которых f(a)=f(b), лежат на отрезке [-N,N], т.е. число пар (P,Q), для которых $d(P,Q)\in\mathbb{Z}$, конечно.

3. Числовая последовательность $(a_n), a_n \geq 0$, удовлетворяет неравенству $a_{n+m} \leq a_n \cdot a_m \ \forall n, m \in N$. Доказать, что последовательность $(\sqrt[p]{a_n})$ имеет предел.

Решение. 1) Если $\exists a_m = 0 \Rightarrow a_n = 0 \quad \forall n \geq m \Rightarrow \lim \sqrt[n]{a_n} = 0.$

$$(a_n>0, \forall n.$$
 Обозначим $b_n=\lg a_n\Rightarrow b_{n+m}\leq b_n+b_m$ и $\lg \sqrt[n]{a_n}=rac{b_n}{n}$.

Выбираем произвольно m и фиксируем. любое n представимо в виде n=q(n)m+r(n), где $0 \le r(n) < m$. $b_n = b_{q(n)m+r(n)} \le q(n)b_m + b_{r(n)} \le q(n)b_m + c$, $c = \max\{b_0, b_1, ..., b_{m-1}\}$.

$$\frac{b_n}{n} \leq \frac{q(n)}{n} b_m + \frac{c}{n} \Rightarrow \overline{\lim} \frac{b_n}{n} \leq \frac{b_m}{m}, \forall m, \text{ t.k. } 1 = \frac{q(n)}{n} \cdot m + \frac{r(n)}{n} \Rightarrow \frac{q(n)}{n} \to \frac{1}{m}.$$

 $\overline{\lim} \frac{b_n}{n} \leq \underline{\lim} \frac{b_n}{n} \Rightarrow \exists \lim \frac{b_n}{n} \leq b_1. \sqrt[n]{a_n} = 10^{\frac{b_n}{n}} \Rightarrow \exists \lim \sqrt[n]{a_n},$ причем конечный.

4. Пусть $A = [0; 1] \times [0; 1]$, и на множестве A задана функция

$$S(x,y) = \sum_{\frac{1}{2} \le \frac{m}{n} \le 2, \ n,m \in N} x^m y^n.$$

Найти
$$\lim_{\substack{(x,y)\to(1,1)\\(x,y)\in A}} (1-xy^2)(1-x^2y)S(x,y).$$

Решение.
$$S(x,y) = \sum_{n=1}^{\infty} \sum_{m=n}^{4n} x^m y^{2n} + \sum_{n=1}^{\infty} \sum_{m=n}^{4n-2} x^m y^{2n-1} = \sum_{n=1}^{\infty} \left(y^{2n} \frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^n - x^{4n+1}}{1-x} + y^{2n-1} \frac{x^n - x^{4n-1}}{1-x} \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^n - x^n - x^n - x^n - x^n - x^n \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^n \right) = \lim_{n=1}^{\infty} \left(\frac{x^n - x^n - x^n$$

5. С помощью циркуля и линейки построить директрису параболы, заданную на плоскости своим графиком.

Решение. Построение основано на следующих двух фактах:

- а) прямая, проходящая через середины параллельных между собой хорд параболы, параллельна оси параболы;
- б) пучок лучей, параллельный оси параболы, при зеркальном отражении от параболы, проходит через фокус параболы.
- 6. Для произвольного числа $n \in N$ рассмотрим две суммы

$$\alpha_n := \sum_{j \geq 1} (\sum_{\substack{1 \leq k_1 < k_2 \cdots < k_j \leq n, \\ \text{BCE } k_j \text{ HEYETHЫ}}} \frac{1}{k_1 k_2 \cdots k_j}), \quad \beta_n := \sum_{j \geq 1} (\sum_{\substack{1 \leq m_1 < m_2 \cdots < m_j \leq n, \\ \text{BCE } m_j \text{ ЧЕТНЫ}}} \frac{1}{m_1 m_2 \cdots m_j}).$$

Пусть $x_n = \alpha_n - \beta_n$. Найти асимптотику последовательности (x_n) (т.е. такие $\lambda, \mu \in R$, для которых $\lim_{n \to \infty} \frac{x_n}{\lambda n^{\mu}} = 1$).

Решение. Пусть, например, n = 2l. Рассмотрим многочлен

$$f_n(x) = \left(x + \frac{1}{1}\right)\left(x + \frac{1}{3}\right)\left(x + \frac{1}{5}\right)...\left(x + \frac{1}{2l-1}\right).$$

Легко видеть, что $\alpha_n = f_n(1) - 1$. Аналогично для многочлена $g_n(x) = (x + \frac{1}{2})(x + \frac{1}{4})...(x + \frac{1}{2l})$ имеем $\beta_n = g_n(1) - 1$. Отсюда $x_n = \alpha_n - \beta_n = \frac{2 \cdot 4 \cdot 6 \cdot ... \cdot 2l}{1 \cdot 3 \cdot 5 \cdot ... \cdot (2l - 1)} - \frac{3 \cdot 5 \cdot ... \cdot (2l + 1)}{2 \cdot 4 \cdot ... \cdot (2l)}$.

Из формулы Валлиса
$$\frac{\pi}{2} = \lim_{n \to \infty} \frac{1}{2n+1} \left[\frac{(2n)!!}{(2n-1)!!} \right]^2$$
 получаем эквивалентность

$$\frac{1 \cdot 3 \cdot \ldots \cdot (2l-1)}{2 \cdot 4 \cdot \ldots \cdot (2l)} \sim \frac{1}{\sqrt{\pi l}}.$$
 Поэтому $x_n \sim \sqrt{\pi l} - \frac{1}{\sqrt{\pi l}} (2l+1) \sim \sqrt{\pi l} - \frac{2}{\sqrt{\pi}} \sqrt{l} = \left(\sqrt{\frac{\pi}{2}} - \sqrt{\frac{2}{\pi}}\right) \sqrt{n}.$ Случай $n = 2l+1$ приводит к тому же результату.

Республиканская студенческая олимпиада по математике (Группа Б, 2011г.)

1. Найти все функции $f: C \to C$, удовлетворяющие функциональному уравнению

$$f(z) + z \cdot f(1-z) = 1 + z.$$

Решение.
$$\left\{ \begin{array}{ll} f(z) + z f(1-z) = 1 + z \\ f(1-z) + (1-z) f(z) = 2 - z \end{array} \right. \Rightarrow (z^2 - z + 1) f(z) = z^2 - z + 1.$$

Пусть α и $\overline{\alpha}$ — корни уравнения $z^2-z+1=0$. Тогда $\alpha+\overline{\alpha}=1$, $\alpha\overline{\alpha}=1$ и

$$f(z)=1\ \forall z
eq lpha, \overline{lpha}.$$
 Пусть $f(lpha)=a,$ $f(\overline{lpha})=b.$ Тогда $\left\{ egin{array}{l} a+lpha=1,\ alpha=1+lpha \ b+\overline{lpha}a=1+\overline{lpha}. \end{array}
ight. \Leftrightarrow b+\overline{lpha}a=1+\overline{lpha}.$

$$f(z)=\left\{egin{array}{ll} 1, & z
eq lpha, \overline{lpha}, \\ a, & z=lpha, \ \mathrm{гдe}\ a-\mathrm{произвольноe}, \\ 1+\overline{lpha}(1-a), & z=\overline{lpha}. \end{array}
ight.$$

2. Вычислить определитель
$$\Delta_n = \begin{vmatrix} 1 & -1 & 0 & \cdots & 0 \\ x & h & -1 & \cdots & 0 \\ x^2 & hx & h & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x^n & hx^{n-1} & hx^{n-2} & \cdots & h \end{vmatrix}$$
.

Решение. Прибавляем первый столбец ко второму и имеем $(m+h)^n$

$$\Delta_n = (x+h)^n \Delta_{n-1} \quad \Rightarrow \quad \Delta_n = (x+h)^n$$

3. Последовательность (S_n) задана следующим образом:

$$S_1 = \ln a$$
, $S_n = \sum_{k=1}^{n-1} \ln(a - S_k)$, $n \ge 2$.

Доказать, что последовательность (S_n) сходится и найти ее предел.

Решение. $S_{n+1} = S_n + \ln(a - S_n)$ (1)

Рассмотрим функцию $f(x) = x + \ln(a - x)$, x < a. Из неравенства $\ln(1 + x) \le x$, x > -1, следует, что $f(x) \le x + a - 1 - x = a - 1$, x < a. Если $x \le a - 1$, то $\ln(a - x) \ge 0$ и, поэтому, $f(x) \ge x$. Так как $S_1 = \ln a \le a - 1$, то $S_1 \le S_2 = f(S_1) \le S_3 \le \cdots$. Следовательно, последовательность (S_n) возрастает и ограниченна, а, значит имеет конечный предел S. Переходя в неравенстве (1) к пределу, имеем $S = S + \ln(a - S) \Rightarrow S = a - 1$.

4. Пусть $p(x) = 2x^6 + 4x^5 + 3x^4 + 5x^3 + 3x^2 + 4x + 2$, $f(\alpha) = \int_0^{+\infty} \frac{x^{\alpha} dx}{p(x)}$. Найти: а) множество задания функции f; б) точку минимума функции f.

Решение. 1) D(f) = (-1; 5).

2)
$$f(\alpha) = \int_{0}^{+\infty} \frac{x^{\alpha} dx}{p(x)} = \left[\tau = \frac{1}{x}\right] = -\int_{+\infty}^{0} \frac{\tau^{6} d\tau}{\tau^{2+\alpha} p(\tau)} = \int_{0}^{+\infty} \frac{\tau^{4-\alpha} d\tau}{p(\tau)} \Rightarrow f(\alpha) = \frac{1}{2} (f(\alpha) + f(4-\alpha)) = \frac{1}{2} \int_{0}^{+\infty} \frac{(x^{\alpha} + x^{4-\alpha}) dx}{p(x)} \ge \int_{0}^{+\infty} \frac{x^{2} dx}{p(x)} = f(2), \forall \alpha \in (-1; 5).$$

Следовательно, $\alpha=2$ — точка минимума f.

5. Найти дифференцируемые функции $u:R \to R$, удовлетворяющие соотношениям

$$u'(t) = u(t) + \int_{0}^{1} u(\tau)d\tau, \quad u(0) = 1.$$

Решение. Обозначим $b=\int\limits_0^1 u(t)dt$, тогда $u(t)=Ce^x-b$.

$$\begin{cases} u(0) = C - b = 1 \\ b = C(e - 1) - b \end{cases} \Leftrightarrow \begin{cases} C - b = 1 \\ C(e - 1) - 2b = 0 \end{cases} \Leftrightarrow b = \frac{e - 1}{3 - e}, C = \frac{2}{3 - e} \Rightarrow$$
$$\Rightarrow u(t) = \frac{1}{3 - e} (2e^t - e + 1).$$

6. Известно, что наибольший угол, под которым эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ может пересекать концентричную ему окружность, равен 45° . Найти отношение a/b полуосей эллипса.

Решение. Пусть $P(x_0, y_0)$ — точка пересечения эллипса и окружности $x^2 + y^2 = r^2$, лежащая в первой четверти.

Уравнение касательной l_e к эллипсу в точке P имеет вид $\frac{x_0}{a^2}(x-x_0)+\frac{y_0}{b^2}(y-y_0)=0$, а уравнение касательной l_o к окружности в $P-x_0(x-x_0)+y_0(y-y_0)=0$. Из этих уравнений находим x_0 и y_0 : $x_0^2=\frac{a^2(r^2-b^2)}{a^2-b^2}$, $y_0^2=\frac{(a^2-r^2)b^2}{a^2-b^2}$.

Угол $\varphi=(\widehat{l_e,l_o})=(\widehat{n_e,n_o})=(\{\frac{x_0}{a^2}, \frac{\widehat{y_0}}{b^2}\}, \{x_0,y_0\})$, где $n_e=\{\frac{x_0}{a^2}, \frac{y_0}{b^2}\}$, $n_o=\{x_0,y_0\}$ — нормали в $P(x_0,y_0)$ к эллипсу и окружности соответственно.

$$\cos \varphi = \frac{x_0^2/a^2 + y_0^2/b^2}{\sqrt{x_0^2/a^4 + y_0^2/b^4}\sqrt{x_0^2 + y_0^2}} = \frac{1 \cdot ab}{\sqrt{a^2 + b^2 - r^2} \cdot r} =: f(r).$$

Для нахождения $\min f(r)$ находим решения уравнения f'(r)=0, т.е. решения уравнения $\frac{a^2+b^2-r^2}{\sqrt{a^2+b^2-r^2}}=0$. Отсюда $r=\sqrt{\frac{a^2+b^2}{2}}$. Тогда

$$\cos \varphi_0 = \frac{ab}{\sqrt{(a^2 + b^2)/2}\sqrt{(a^2 + b^2)/2}} = \frac{2ab}{a^2 + b^2}.$$

По условию $\frac{2ab}{a^2+b^2} = \frac{1}{\sqrt{2}} \sim \frac{2t}{1+t^2} = \frac{1}{\sqrt{2}} \left(t = \frac{a}{b}\right) \Rightarrow t = \sqrt{2}+1.$