ВВЕДЕНИЕ В АРХИТЕКТУРУ КОМПЬЮТЕРОВ

Буза М.К. Введение в архитектуру компьютеров. Учеб. пособие. - Мн.: БГУ, 2000. - 253 с.

ISBN 985-445-211-5

Рассматриваются архитектурные решения выпускаемых перспективных компьютеров. Анализируется семантический разрыв существующими между принципами архитектур компьютеров и окружением пользователя. Описываются особенности защиты информации В компьютерах И исследуются нетрадиционные методы кодирования данных.

Для студентов специальности "Информатика".

Оглавление

Оглавление	
ПРЕДИСЛОВИЕ ОСНОВНЫЕ СОКРАЩЕНИЯ 1. ПОНЯТИЕ АРХИТЕКТУРЫ ВЫЧИСЛИТЕЛЬНОЙ	6 8 9
СИСТЕМЫ	-
1.1 Архитектура как набор взаимодействующих компонентов	9
1.2 Архитектура как интерфейс между уровнями физической системы	13
1.3 Семантический разрыв между архитектурными решениями ЭВМ и его программным окружением	16
1.4 Анализ архитектурных принципов фон Неймана	20
1.5 Некоторые способы совершенствования архитектуры	22
1.5.1 Хранение информации в виде самоопределяемых данных	22
1.5.2 Области санкционированного доступа	25
1.5.3 Одноуровневая память	26
1.6 Концепция виртуальной памяти	27
1.6.1 Задачи, решаемые виртуальной памятью	27
1.6.2 Страничная организация памяти	28
1.7 Особенности функционирования управляющей ЭВМ	31
Упражнения	33
2. RISC - и CISC - APXИТЕКТУРА	34
2.1 Основные принципы RISC -архитектуры	34
2.2 Отличительные черты RISC - и CISC - архитектур	35
2.3 Некоторые задачи реализации RISC -процессоров	37
2.4 Методы адресации и типы команд	40
2.5 Компьютеры со стековой архитектурой	41
2.6 Оптимизация системы команд	46

2.7 Процессоры с микропрограммным управлением	47
2.7.1 Горизонтальное микропрограммирование	49
2.7.2 Вертикальное микропрограммирование	50
Упражнения	51
3. КОМПЬЮТЕРНЫЕ СЕТИ	52
3.1 Эталонная модель сети	53
3.2 Топология локальных сетей	57
Упражнения	61
4. МИКРОПРОЦЕССОРЫ	62
4.1 Процессоры с архитектурой 80х86 и Pentium	62
4.2 Особенности процессоров с архитектурой SPARC	68
компании Sun Micro systems	
4.3 Процессоры PA-RISC компании Hewlett Packard	74
4.4 Процессор MC 88110 компании Motorola	79
7	81
	86
/ F	91
I	98
••	99
5.1 Системы кодирования данных с симметричным	99
представлением цифр	
5.2 Системы кодирования данных с отрицательным	101
основанием	
5.3 Кодирование данных с помощью вычетов	106
Упражнения	114
6. ОРГАНИЗАЦИЯ СИСТЕМЫ ПРЕРЫВАНИЯ	115
6.1 Основные определения и характеристики	115
6.2 Параметры эффективности системы прерывания	117
6.3 Вход в прерывающую программу	118
6.4 Приоритетное обслуживание прерываний	121
6.5 Организация возврата к прерванной программе	123
6.6 Особенности системы прерывания в современных ЭВМ	
Упражнения	126
7. ВЗАИМОДЕЙСТВИЕ И УПРАВЛЕНИЕ ПРОЦЕССАМИ	
7.1 Понятие процесса и состояния	128
7.2 Управление процессами в многопроцессорном	129
компьютере	404
7.3 Управление процессами в однопроцессорном	131
компьютере	422
7.4 Форматы таблиц процессов	132
7.5 Синхронизация процессов	133
7.6 Операции Р и V над семафорами	134
7.7 Графическое представление процессов	136
7.8 Почтовые ящики	137
7.9 Монитор Хоара	138
7.10 Проблема тупиков	139

7.11 Тупик в случае повторно используемых ресурсов	139
Упражнения	141
8. ПРОЦЕССЫ ПОСЛЕДОВАТЕЛЬНЫЕ И	143
ПАРАЛЛЕЛЬНЫЕ	
8.1 Отношение предшествования процессов	143
8.2 Типы параллелизма	145
8.3 Направления повышения эффективности	147
компьютеров	
8.4 Предпосылки создания систем параллельного	151
действия	
8.5 Некоторые модели параллельных программ	153
8.6 Формальная модель программ на сетях Петри	158
Упражнения	164
9. СИСТЕМЫ ПАРАЛЛЕЛЬНОГО ДЕЙСТВИЯ	165
9.1 Вычислительные системы и многомашинные	165
комплексы на базе однопроцессорных ЭВМ	
9.1.1 Двухмашинная система па базе БЭСМ-6	166
9.1.2 Многомашинная система ОИЯИ	167
9.1.3 Многомашинные комплексы на базе ЕС ЭВМ	167
9.2 Многопроцессорный вычислительный комплекс	171
Эльбрус	
9.3 Система программирования МВК Эльбрус	174
9.3.1 Базовые инструментальные и технологические	174
средства	4
9.3.2 Специализированные системы программирования	175
9.4 Магистральные системы	177
9.5 Матричные компьютеры	181
9.6 Концепции вычислительных систем с	183
комбинированной структурой	405
9.7 Архитектура типа гиперкуб	185
9.8 Нейрокомпьютеры	187
Упражнения	189
10. ЯЗЫКИ ПАРАЛЛЕЛЬНОГО ПРОГРАММИРОВАНИЯ	
10.1 Основные подходы к проектированию языков	191
параллельного программирования	104
10.2 Примеры языков параллельного программирования	194
10.2.1 Р-язык	194
10.2.2 ЯПФ-язык	194
10.2.3 К-язык	195 196
10.2.4 Язык диспозиций 10.2.5 Язык Оссат	200
	200
10.3 Преобразование последовательных программ в	201
последовательно-параллельные 10.4 Способы организации мультипроцессорных систем	205
Упражнения	203
11. ЦЕЛОСТНОСТЬ, СЖАТИЕ И ЗАЩИТА ДАННЫХ	209
II. HEMOCITIOCID, CARATHE II SAMINIA MANINDIA	203

11.1 Корректирующие коды	209
11.1.1 Коды Хемминга	210
11.1.2 Код с проверкой на четность	213
11.2 Сжатие данных	214
11.2.1 Простые алгоритмы	215
11.2.2 Сжатие документов	217
1.2.3 Программы для обработки документов	217
11.2.4 Кодирование цветных изображений	220
11.2.5 Сжатие цветных изображений	221
11.2.6 Инструменты разработчиков	223
11.3 Методы защиты информации	225
11.3.1 Классификация и особенности программных	225
методов защиты от копирования	
11.3.2 Способы увеличения эффективности и надежности	227
защиты от копирования	
11.3.3 Особенности защиты информации в компьютерных	230
сетях	
11.4 Контроль данных	232
11.4.1 Специфика передачи информации в	232
вычислительных системах	
11.4.2 Классификация ошибок и их характеристики	233
11.4.3 Методы обнаружения и исправления ошибок в ЭВМ	235
11.4.4 Программные методы контроля	236
Упражнения	238
12. МЕТОДЫ ПЛАНИРОВАНИЯ	239
12.1 Понятие мультипрограммирования	239
12.2 Распределение задач по процессорам	241
12.3 Планирование в мультипрограммных системах	243
12.3.1 Планирование по наивысшему приоритету	244
12.3.2 Метод круговорота (карусель)	245
12.3.3 Очереди с обратной связью	245
12.3.4 Многоуровневое планирование	246
Упражнения	247
ЛИТЕРАТУРА	248
ПРИЛОЖЕНИЕ	249