ОСНОВЫ ТЕОРИИ ИНФОРМАЦИИ

Свирид Ю. В. Основы теории информации: курс лекций / Ю. В. Свирид. - 2-е изд., испр. и доп. - Минск :БГУ, 2010 - 151 с.

ISBN 978-985-518-378-6

Курс лекций содержит введение в теорию информации и ее приложения. Понятие информации рассмотрено с синтаксической, семантической и прагма тической точек зрения, а также в связи с колмогоровской сложностью объектов. Ha основе понятия 0 типичных последовательностях фундаментальные доказаны три теоремы кодирования - о сжатии данных, о передаче данных и о сжатии и передаче данных. Рассмотрены некоторые важные каналы связи и вы числена Приведено пропускная способность. описание И доказательство оптимальности ряда алгоритмов сжатия теоретико-информа данных. Даны ционные ОСНОВЫ криптологии.

Для студентов и аспирантов математических, физических и инженерных специальностей университета.

Оглавление

От автора	
Введение	7
Глава 1. Что такое информация?	14
1.1. Некоторые понятия из теории вероятностей	14
1.2. Информация и энтропия	17
1.3. Семантическая и прагматическая информация	29
1.4. Дифференциальная и относительная энтропия	33
1.5. Максимум энтропии	37
1.6. Энтропия дискретных случайных процессов	41
1.7. Эргодические и марковские случайные	45
процессы	
1.8. Колмогоровская сложность	53
1.9. Задачи	56
Глава 2. Фундаментальные теоремы	61
кодирования	
2.1. Типичные последовательности	61
2.2. Сжатие данных и избыточность	64
2.3. Совместно-типичные последовательности	67
2.4. Лемма об обработке данных и лемма Фано	71
2.5. Теорема о передаче данных	74

2.6. Теорема о сжатии и передаче данных	81
2.7. Пропускная способность дискретных каналов	84
СВЯЗИ	
2.8. Гауссовский канал	92
2.9. Задачи	96
Глава 3. Кодирование источника сообщений	99
3.1. Классы кодов источника и неравенство Крафта	
3.2. Оптимальность кодов, алгоритмы Фано и	107
Шеннона	
3.3. Алгоритм Хаффмена	114
3.4. Алгоритм Танстелла	116
3.5. Арифметическое кодирование	120
3.6. Префиксное кодирование натуральных чисел	123
3.7. Алгоритм Рябко - Элайеса	125
3.8. Алгоритм Лемпеля - Зива	128
3.9. Задачи	134
Глава 4. Теоретико-информационные основы	138
криптологии	
4.1. Классические системы шифрования	138
4.2. Основы теории Шеннона о защите информации	
4.3. Задачи	145
Библиографические ссылки	146
Предметный указатель	148